流計算框架 Flink 與 Storm 的性能對比

大數(shù)據(jù)

作者:夢瑤

1. 背景

Apache Flink 和 Apache Storm 是當(dāng)前業(yè)界廣泛使用的兩個分布式實時計算框架。其中?Apache Storm(以下簡稱“Storm”)在美團點評實時計算業(yè)務(wù)中已有較為成熟的運用(可參考?Storm 的可靠性保證測試),有管理平臺、常用 API 和相應(yīng)的文檔,大量實時作業(yè)基于 Storm 構(gòu)建。而?Apache Flink(以下簡稱“Flink”)在近期倍受關(guān)注,具有高吞吐、低延遲、高可靠和精確計算等特性,對事件窗口有很好的支持,目前在美團點評實時計算業(yè)務(wù)中也已有一定應(yīng)用。

為深入熟悉了解 Flink 框架,驗證其穩(wěn)定性和可靠性,評估其實時處理性能,識別該體系中的缺點,找到其性能瓶頸并進行優(yōu)化,給用戶提供最適合的實時計算引擎,我們以實踐經(jīng)驗豐富的 Storm 框架作為對照,進行了一系列實驗測試 Flink 框架的性能,計算 Flink 作為確保“至少一次”和“恰好一次”語義的實時計算框架時對資源的消耗,為實時計算平臺資源規(guī)劃、框架選擇、性能調(diào)優(yōu)等決策及 Flink 平臺的建設(shè)提出建議并提供數(shù)據(jù)支持,為后續(xù)的 SLA 建設(shè)提供一定參考。

Flink 與 Storm 兩個框架對比:

大數(shù)據(jù)

2. 測試目標(biāo)

評估不同場景、不同數(shù)據(jù)壓力下 Flink 和 Storm 兩個實時計算框架目前的性能表現(xiàn),獲取其詳細性能數(shù)據(jù)并找到處理性能的極限;了解不同配置對 Flink 性能影響的程度,分析各種配置的適用場景,從而得出調(diào)優(yōu)建議。

2.1 測試場景

“輸入-輸出”簡單處理場景

通過對“輸入-輸出”這樣簡單處理邏輯場景的測試,盡可能減少其它因素的干擾,反映兩個框架本身的性能。
同時測算框架處理能力的極限,處理更加復(fù)雜的邏輯的性能不會比純粹“輸入-輸出”更高。

用戶作業(yè)耗時較長的場景

如果用戶的處理邏輯較為復(fù)雜,或是訪問了數(shù)據(jù)庫等外部組件,其執(zhí)行時間會增大,作業(yè)的性能會受到影響。因此,我們測試了用戶作業(yè)耗時較長的場景下兩個框架的調(diào)度性能。

窗口統(tǒng)計場景

實時計算中常有對時間窗口或計數(shù)窗口進行統(tǒng)計的需求,例如一天中每五分鐘的訪問量,每 100 個訂單中有多少個使用了優(yōu)惠等。Flink 在窗口支持上的功能比 Storm 更加強大,API 更加完善,但是我們同時也想了解在窗口統(tǒng)計這個常用場景下兩個框架的性能。

精確計算場景(即消息投遞語義為“恰好一次”)

Storm 僅能保證“至多一次” (At Most Once) 和“至少一次” (At Least Once) 的消息投遞語義,即可能存在重復(fù)發(fā)送的情況。有很多業(yè)務(wù)場景對數(shù)據(jù)的精確性要求較高,希望消息投遞不重不漏。Flink 支持“恰好一次” (Exactly Once) 的語義,但是在限定的資源條件下,更加嚴格的精確度要求可能帶來更高的代價,從而影響性能。因此,我們測試了在不同消息投遞語義下兩個框架的性能,希望為精確計算場景的資源規(guī)劃提供數(shù)據(jù)參考。

2.2 性能指標(biāo)

吞吐量(Throughput)

單位時間內(nèi)由計算框架成功地傳送數(shù)據(jù)的數(shù)量,本次測試吞吐量的單位為:條/秒。反映了系統(tǒng)的負載能力,在相應(yīng)的資源條件下,單位時間內(nèi)系統(tǒng)能處理多少數(shù)據(jù)。吞吐量常用于資源規(guī)劃,同時也用于協(xié)助分析系統(tǒng)性能瓶頸,從而進行相應(yīng)的資源調(diào)整以保證系統(tǒng)能達到用戶所要求的處理能力。假設(shè)商家每小時能做二十份午餐(吞吐量 20 份/小時),一個外賣小哥每小時只能送兩份(吞吐量 2 份/小時),這個系統(tǒng)的瓶頸就在小哥配送這個環(huán)節(jié),可以給該商家安排十個外賣小哥配送。

延遲(Latency)

數(shù)據(jù)從進入系統(tǒng)到流出系統(tǒng)所用的時間,本次測試延遲的單位為:毫秒。反映了系統(tǒng)處理的實時性。金融交易分析等大量實時計算業(yè)務(wù)對延遲有較高要求,延遲越低,數(shù)據(jù)實時性越強。假設(shè)商家做一份午餐需要 5 分鐘,小哥配送需要 25 分鐘,這個流程中用戶感受到了 30 分鐘的延遲。如果更換配送方案后延遲變成了 60 分鐘,等送到了飯菜都涼了,這個新的方案就是無法接受的。

3. 測試環(huán)境

為 Storm 和 Flink 分別搭建由 1 臺主節(jié)點和 2 臺從節(jié)點構(gòu)成的 Standalone 集群進行本次測試。其中為了觀察 Flink 在實際生產(chǎn)環(huán)境中的性能,對于部分測內(nèi)容也進行了 on Yarn 環(huán)境的測試。

3.1 集群參數(shù)

大數(shù)據(jù)

3.2 框架參數(shù)

大數(shù)據(jù)

4. 測試方法

4.1 測試流程

大數(shù)據(jù)

數(shù)據(jù)生產(chǎn)

Data Generator 按特定速率生成數(shù)據(jù),帶上自增的 id 和 eventTime 時間戳寫入 Kafka 的一個 Topic(Topic Data)。

數(shù)據(jù)處理

Storm Task 和 Flink Task (每個測試用例不同)從 Kafka Topic Data 相同的 Offset 開始消費,并將結(jié)果及相應(yīng) inTime、outTime 時間戳分別寫入兩個 Topic(Topic Storm 和 Topic Flink)中。

指標(biāo)統(tǒng)計

Metrics Collector 按 outTime 的時間窗口從這兩個 Topic 中統(tǒng)計測試指標(biāo),每五分鐘將相應(yīng)的指標(biāo)寫入 MySQL 表中。
Metrics Collector 按 outTime 取五分鐘的滾動時間窗口,計算五分鐘的平均吞吐(輸出數(shù)據(jù)的條數(shù))、五分鐘內(nèi)的延遲(outTime – eventTime 或 outTime – inTime)的中位數(shù)及 99 線等指標(biāo),寫入 MySQL 相應(yīng)的數(shù)據(jù)表中。最后對 MySQL 表中的吞吐計算均值,延遲中位數(shù)及延遲 99 線選取中位數(shù),繪制圖像并分析。

4.2 默認參數(shù)

Storm 和 Flink 默認均為?At Least Once?語義。Storm 開啟 ACK,ACKer 數(shù)量為 1。Flink 的 Checkpoint 時間間隔為 30 秒,默認 StateBackend 為 Memory。保證 Kafka 不是性能瓶頸,盡可能排除 Kafka 對測試結(jié)果的影響。測試延遲時數(shù)據(jù)生產(chǎn)速率小于數(shù)據(jù)處理能力,假設(shè)數(shù)據(jù)被寫入 Kafka 后立刻被讀取,即 eventTime 等于數(shù)據(jù)進入系統(tǒng)的時間。測試吞吐量時從 Kafka Topic 的最舊開始讀取,假設(shè)該 Topic 中的測試數(shù)據(jù)量充足。

4.3 測試用例

Identity

Identity 用例主要模擬“輸入-輸出”簡單處理場景,反映兩個框架本身的性能。輸入數(shù)據(jù)為“msgId, eventTime”,其中 eventTime 視為數(shù)據(jù)生成時間。單條輸入數(shù)據(jù)約 20 B。進入作業(yè)處理流程時記錄 inTime,作業(yè)處理完成后(準備輸出時)記錄 outTime。作業(yè)從 Kafka Topic Data 中讀取數(shù)據(jù)后,在字符串末尾追加時間戳,然后直接輸出到 Kafka。輸出數(shù)據(jù)為“msgId, eventTime, inTime, outTime”。單條輸出數(shù)據(jù)約 50 B。

大數(shù)據(jù)

Sleep

Sleep 用例主要模擬用戶作業(yè)耗時較長的場景,反映復(fù)雜用戶邏輯對框架差異的削弱,比較兩個框架的調(diào)度性能。輸入數(shù)據(jù)和輸出數(shù)據(jù)均與 Identity 相同。讀入數(shù)據(jù)后,等待一定時長(1 ms)后在字符串末尾追加時間戳后輸出

大數(shù)據(jù)

Windowed Word Count

Windowed Word Count 用例主要模擬窗口統(tǒng)計場景,反映兩個框架在進行窗口統(tǒng)計時性能的差異。此外,還用其進行了精確計算場景的測試,反映 Flink?恰好一次投遞的性能。輸入為 JSON 格式,包含 msgId、eventTime 和一個由若干單詞組成的句子,單詞之間由空格分隔。單條輸入數(shù)據(jù)約 150 B。讀入數(shù)據(jù)后解析 JSON,然后將句子分割為相應(yīng)單詞,帶 eventTime 和 inTime 時間戳發(fā)給 CountWindow 進行單詞計數(shù),同時記錄一個窗口中最大最小的 eventTime 和 inTime,最后帶 outTime 時間戳輸出到 Kafka 相應(yīng)的 Topic。Spout/Source 及 OutputBolt/Output/Sink 并發(fā)度恒為 1,增大并發(fā)度時僅增大 JSONParser、CountWindow 的并發(fā)度。由于 Storm 對 window 的支持較弱,CountWindow 使用一個 HashMap 手動實現(xiàn),F(xiàn)link 用了原生的 CountWindow 和相應(yīng)的 Reduce 函數(shù)。

大數(shù)據(jù)

5. 測試結(jié)果

5.1 Identity 單線程吞吐量

大數(shù)據(jù)

上圖中藍色柱形為單線程 Storm 作業(yè)的吞吐,橙色柱形為單線程 Flink 作業(yè)的吞吐。Identity 邏輯下,Storm 單線程吞吐為?8.7?萬條/秒,F(xiàn)link 單線程吞吐可達?35?萬條/秒。當(dāng) Kafka Data 的 Partition 數(shù)為 1 時,F(xiàn)link 的吞吐約為 Storm 的 3.2 倍;當(dāng)其 Partition 數(shù)為 8 時,F(xiàn)link 的吞吐約為 Storm 的 4.6 倍。由此可以看出,Flink 吞吐約為 Storm 的 3-5 倍。

5.2 Identity 單線程作業(yè)延遲

大數(shù)據(jù)

采用 outTime – eventTime 作為延遲,圖中藍色折線為 Storm,橙色折線為 Flink。虛線為 99 線,實線為中位數(shù)。從圖中可以看出隨著數(shù)據(jù)量逐漸增大,Identity 的延遲逐漸增大。其中 99 線的增大速度比中位數(shù)快,Storm 的 增大速度比 Flink 快。其中 QPS 在 80000 以上的測試數(shù)據(jù)超過了 Storm 單線程的吞吐能力,無法對 Storm 進行測試,只有 Flink 的曲線。對比折線最右端的數(shù)據(jù)可以看出,Storm QPS 接近吞吐時延遲中位數(shù)約 100 毫秒,99 線約 700 毫秒,F(xiàn)link 中位數(shù)約 50 毫秒,99 線約 300 毫秒。Flink 在滿吞吐時的延遲約為 Storm 的一半。

5.3 Sleep 吞吐量

大數(shù)據(jù)

從圖中可以看出,Sleep 1 毫秒時,Storm 和 Flink 單線程的吞吐均在 900 條/秒左右,且隨著并發(fā)增大基本呈線性增大。對比藍色和橙色的柱形可以發(fā)現(xiàn),此時兩個框架的吞吐能力基本一致。

5.4 Sleep 單線程作業(yè)延遲(中位數(shù))

大數(shù)據(jù)

依然采用 outTime – eventTime 作為延遲,從圖中可以看出,Sleep 1 毫秒時,F(xiàn)link 的延遲仍低于 Storm。

5.5 Windowed Word Count 單線程吞吐量

大數(shù)據(jù)單線程執(zhí)行大小為 10 的計數(shù)窗口,吞吐量統(tǒng)計如圖。從圖中可以看出,Storm 吞吐約為 1.2 萬條/秒,F(xiàn)link Standalone 約為 4.3 萬條/秒。Flink 吞吐依然為 Storm 的 3 倍以上。

大數(shù)據(jù)

由于同一算子的多個并行任務(wù)處理速度可能不同,在上游算子中不同快照里的內(nèi)容,經(jīng)過中間并行算子的處理,到達下游算子時可能被計入同一個快照中。這樣一來,這部分數(shù)據(jù)會被重復(fù)處理。因此,F(xiàn)link 在 Exactly Once 語義下需要進行對齊,即當(dāng)前最早的快照中所有數(shù)據(jù)處理完之前,屬于下一個快照的數(shù)據(jù)不進行處理,而是在緩存區(qū)等待。當(dāng)前測試用例中,在 JSON Parser 和 CountWindow、CountWindow 和 Output 之間均需要進行對齊,有一定消耗。為體現(xiàn)出對齊場景,Source/Output/Sink 并發(fā)度的并發(fā)度仍為 1,提高了 JSONParser/CountWindow 的并發(fā)度。具體流程細節(jié)參見前文 Windowed Word Count 流程圖。上圖中橙色柱形為 At Least Once 的吞吐量,黃色柱形為 Exactly Once 的吞吐量。對比兩者可以看出,在當(dāng)前并發(fā)條件下,Exactly Once 的吞吐較 At Least Once 而言下降了 6.3%

5.7 Windowed Word Count Storm At Least Once 與 At Most Once 吞吐量對比

大數(shù)據(jù)

Storm 將 ACKer 數(shù)量設(shè)置為零后,每條消息在發(fā)送時就自動 ACK,不再等待 Bolt 的 ACK,也不再重發(fā)消息,為 At Most Once 語義。上圖中藍色柱形為 At Least Once 的吞吐量,淺藍色柱形為 At Most Once 的吞吐量。對比兩者可以看出,在當(dāng)前并發(fā)條件下,At Most Once 語義下的吞吐較 At Least Once 而言提高了 16.8%

5.8 Windowed Word Count 單線程作業(yè)延遲

大數(shù)據(jù)

Identity 和 Sleep 觀測的都是 outTime – eventTime,因為作業(yè)處理時間較短或 Thread.sleep() 精度不高,outTime – inTime 為零或沒有比較意義;Windowed Word Count 中可以有效測得 outTime – inTime 的數(shù)值,將其與 outTime – eventTime 畫在同一張圖上,其中 outTime – eventTime 為虛線,outTime – InTime 為實線。觀察橙色的兩條折線可以發(fā)現(xiàn),F(xiàn)link 用兩種方式統(tǒng)計的延遲都維持在較低水平;觀察兩條藍色的曲線可以發(fā)現(xiàn),Storm 的 outTime – inTime 較低,outTime – eventTime 一直較高,即 inTime 和 eventTime 之間的差值一直較大,可能與 Storm 和 Flink 的數(shù)據(jù)讀入方式有關(guān)。藍色折線表明 Storm 的延遲隨數(shù)據(jù)量的增大而增大,而橙色折線表明 Flink 的延遲隨著數(shù)據(jù)量的增大而減小(此處未測至 Flink 吞吐量,接近吞吐時 Flink 延遲依然會上升)。即使僅關(guān)注 outTime – inTime(即圖中實線部分),依然可以發(fā)現(xiàn),當(dāng) QPS 逐漸增大的時候,F(xiàn)link 在延遲上的優(yōu)勢開始體現(xiàn)出來。

大數(shù)據(jù)

圖中黃色為 99 線,橙色為中位數(shù),虛線為 At Least Once,實線為 Exactly Once。圖中相應(yīng)顏色的虛實曲線都基本重合,可以看出?Flink Exactly Once 的延遲中位數(shù)曲線與 At Least Once 基本貼合,在延遲上性能沒有太大差異。

5.10 Windowed Word Count Storm At Least Once 與 At Most Once 延遲對比

大數(shù)據(jù)

圖中藍色為 99 線,淺藍色為中位數(shù),虛線為 At Least Once,實線為 At Most Once。QPS 在 4000 及以前的時候,虛線實線基本重合;QPS 在 6000 時兩者已有差異,虛線略高;QPS 接近 8000 時,已超過 At Least Once 語義下 Storm 的吞吐,因此只有實線上的點。可以看出,QPS 較低時 Storm At Most Once 與 At Least Once 的延遲觀察不到差異,隨著 QPS 增大差異開始增大,At Most Once 的延遲較低。

大數(shù)據(jù)

Flink 支持 Standalone 和 on Yarn 的集群部署模式,同時支持 Memory、FileSystem、RocksDB 三種狀態(tài)存儲后端(StateBackends)。由于線上作業(yè)需要,測試了這三種 StateBackends 在兩種集群部署模式上的性能差異。其中,Standalone 時的存儲路徑為 JobManager 上的一個文件目錄,on Yarn 時存儲路徑為 HDFS 上一個文件目錄。對比三組柱形可以發(fā)現(xiàn),使用 FileSystem 和 Memory 的吞吐差異不大,使用 RocksDB 的吞吐僅其余兩者的十分之一左右。對比兩種顏色可以發(fā)現(xiàn),Standalone 和 on Yarn 的總體差異不大,使用 FileSystem 和 Memory 時 on Yarn 模式下吞吐稍高,使用 RocksDB 時 Standalone 模式下的吞吐稍高。

大數(shù)據(jù)

使用 FileSystem 和 Memory 作為 Backends 時,延遲基本一致且較低。使用 RocksDB 作為 Backends 時,延遲稍高,且由于吞吐較低,在達到吞吐瓶頸前的延遲陡增。其中 on Yarn 模式下吞吐更低,接近吞吐時的延遲更高。

6. 結(jié)論及建議

6.1 框架本身性能

由 5.1、5.5 的測試結(jié)果可以看出,Storm 單線程吞吐約為 8.7 萬條/秒,F(xiàn)link 單線程吞吐可達 35 萬條/秒。Flink 吞吐約為 Storm 的 3-5 倍。由 5.2、5.8 的測試結(jié)果可以看出,Storm QPS 接近吞吐時延遲(含 Kafka 讀寫時間)中位數(shù)約 100 毫秒,99 線約 700 毫秒,F(xiàn)link 中位數(shù)約 50 毫秒,99 線約 300 毫秒。Flink 在滿吞吐時的延遲約為 Storm 的一半,且隨著 QPS 逐漸增大,F(xiàn)link 在延遲上的優(yōu)勢開始體現(xiàn)出來。綜上可得,Flink 框架本身性能優(yōu)于 Storm。

6.2 復(fù)雜用戶邏輯對框架差異的削弱

對比 5.1 和 5.3、5.2 和 5.4 的測試結(jié)果可以發(fā)現(xiàn),單個 Bolt Sleep 時長達到 1 毫秒時,F(xiàn)link 的延遲仍低于 Storm,但吞吐優(yōu)勢已基本無法體現(xiàn)。因此,用戶邏輯越復(fù)雜,本身耗時越長,針對該邏輯的測試體現(xiàn)出來的框架的差異越小。

6.3 不同消息投遞語義的差異

由 5.6、5.7、5.9、5.10 的測試結(jié)果可以看出,F(xiàn)link Exactly Once 的吞吐較 At Least Once 而言下降 6.3%,延遲差異不大;Storm At Most Once 語義下的吞吐較 At Least Once 提升 16.8%,延遲稍有下降。由于 Storm 會對每條消息進行 ACK,F(xiàn)link 是基于一批消息做的檢查點,不同的實現(xiàn)原理導(dǎo)致兩者在 At Least Once 語義的花費差異較大,從而影響了性能。而 Flink 實現(xiàn) Exactly Once 語義僅增加了對齊操作,因此在算子并發(fā)量不大、沒有出現(xiàn)慢節(jié)點的情況下對 Flink 性能的影響不大。Storm At Most Once 語義下的性能仍然低于 Flink。Flink 提供了內(nèi)存、文件系統(tǒng)、RocksDB 三種 StateBackends,結(jié)合 5.11、5.12 的測試結(jié)果,三者的對比如下:

大數(shù)據(jù)

6.5 推薦使用 Flink 的場景

綜合上述測試結(jié)果,以下實時計算場景建議考慮使用 Flink 框架進行計算:

要求消息投遞語義為?Exactly Once?的場景;數(shù)據(jù)量較大,要求高吞吐低延遲的場景;需要進行狀態(tài)管理窗口統(tǒng)計的場景。

7. 展望

本次測試中尚有一些內(nèi)容沒有進行更加深入的測試,有待后續(xù)測試補充。例如:Exactly Once 在并發(fā)量增大的時候是否吞吐會明顯下降?用戶耗時到 1ms 時框架的差異已經(jīng)不再明顯(Thread.sleep() 的精度只能到毫秒),用戶耗時在什么范圍內(nèi) Flink 的優(yōu)勢依然能體現(xiàn)出來?本次測試僅觀察了吞吐量和延遲兩項指標(biāo),對于系統(tǒng)的可靠性、可擴展性等重要的性能指標(biāo)沒有在統(tǒng)計數(shù)據(jù)層面進行關(guān)注,有待后續(xù)補充。Flink 使用 RocksDBStateBackend 時的吞吐較低,有待進一步探索和優(yōu)化。關(guān)于 Flink 的更高級 API,如 Table API & SQL 及 CEP 等,需要進一步了解和完善。

8. 參考內(nèi)容

分布式流處理框架——功能對比和性能評估.intel-hadoop/HiBench: HiBench is a big data benchmark suite.Yahoo的流計算引擎基準測試.Extending the Yahoo! Streaming Benchmark.

極客網(wǎng)企業(yè)會員

免責(zé)聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準確性及可靠性,但不保證有關(guān)資料的準確性及可靠性,讀者在使用前請進一步核實,并對任何自主決定的行為負責(zé)。本網(wǎng)站對有關(guān)資料所引致的錯誤、不確或遺漏,概不負任何法律責(zé)任。任何單位或個人認為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實內(nèi)容時,應(yīng)及時向本網(wǎng)站提出書面權(quán)利通知或不實情況說明,并提供身份證明、權(quán)屬證明及詳細侵權(quán)或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實,溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。

2017-11-20
流計算框架 Flink 與 Storm 的性能對比
作者:夢瑤 1 背景 Apache Flink 和 Apache Storm 是當(dāng)前業(yè)界廣泛使用的兩個分布式實時計算框架。其中?Apache Storm(以下

長按掃碼 閱讀全文