ECCV 2020論文合集(目標(biāo)檢測)

上次我們給大家?guī)砹岁P(guān)于CNN與圖像分割主題的論文,本次的主題是目標(biāo)檢測,包含2D、3D的目標(biāo)檢測,旋轉(zhuǎn)目標(biāo)檢測,視頻目標(biāo)檢測,大家在閱讀論文的同時也可親自動手實踐,快來看看吧!

目標(biāo)檢測

目標(biāo)檢測是與計算機視覺與圖像處理的計算機技術(shù),處理的是在數(shù)字圖像和視頻中檢測出的特定類別的語義對象(如人類、建筑物或汽車)的實例。目標(biāo)檢測的研究領(lǐng)域包括人臉檢測和行人檢測。目標(biāo)檢測在計算機視覺的許多領(lǐng)域都有應(yīng)用,包括圖像檢索和視頻監(jiān)控 。

2D目標(biāo)檢測

1 Dense RepPoints: Representing Visual Objects with Dense Point Sets

作者:Yang Ze,Xu Yinghao,Xue Han,Zhang Zheng,Urtasun Raquel,Wang Liwei,Lin Stephen,Hu Han

機構(gòu):北京大學(xué),香港中文大學(xué)

簡介:本文提出了一種對象表示法,稱為dense Rep Points,用于靈活而詳細地建模對象外觀和幾何體。與邊界框的粗幾何定位和特征提取不同,DenseRepPoints自適應(yīng)地將一組密集的點分布到對象上具有重要幾何意義的位置,為對象分析提供信息提示。技術(shù)的發(fā)展是為了解決與監(jiān)督訓(xùn)練從圖像片段和符號密集點集相關(guān)的挑戰(zhàn),并使這種廣泛的表示在理論上是可行的。此外,該表示的多功能性被用于在多個粒度級別上建模對象結(jié)構(gòu)。稠密的表示點顯著提高了面向幾何的可視化理解任務(wù)的性能,包括在具有挑戰(zhàn)性的COCO基準(zhǔn)測試中對象檢測的1:6AP增益。

2 Corner Proposal Network for Anchor-free, Two-stage Object Detection

作者:Kaiwen Duan,Lingxi Xie,Honggang Qi,Song Bai,Qingming Huang,Qi Tian

機構(gòu):中國科學(xué)院大學(xué),華為

簡介:目標(biāo)檢測的目標(biāo)是確定目標(biāo)在圖像中的類別和位置。本文提出了一種新的無錨的兩階段框架,該框架首先通過尋找潛在的角點組合來提取多個目標(biāo)方案,然后通過獨立的分類階段為每個方案分配一個類別標(biāo)簽。作者證明這兩個階段分別是提高查全率和查準(zhǔn)率的有效解決方案,并且可以集成到一個端到端網(wǎng)絡(luò)中。他們的方法被稱為角點建議網(wǎng)絡(luò)(Corner proposition Network,CPN),它具有檢測不同尺度對象的能力,并且避免了被大量的誤報建議所迷惑。在MS-COCO數(shù)據(jù)集上,CPN達到了49.2%的AP,這在現(xiàn)有的目標(biāo)檢測方法中具有競爭力。CPN同樣適用于計算效率的場景,在26.2/43.3fps時,CPN的AP達到41.6%/39.7%,超過了大多數(shù)具有相同推理速度的競爭對手。

3 BorderDet: Border Feature for Dense Object Detection

作者:Han Qiu,Yuchen Ma,Zeming Li,Songtao Liu,Jian Sun

機構(gòu):曠視科技,西安交通大學(xué)

簡介:密集型目標(biāo)探測器依賴于滑動窗口模式,它可以在規(guī)則的圖像網(wǎng)格上預(yù)測目標(biāo)。同時,采用網(wǎng)格點上的特征映射生成邊界盒預(yù)測。點特征使用方便,但可能缺少精確定位的明確邊界信息。本文提出了一種簡單高效的邊界對齊算子,從邊界的極值點提取“邊界特征”,以增強點特征。在BorderAlign的基礎(chǔ)上,作者設(shè)計了一種新的檢測體系結(jié)構(gòu)BorderDet,它明確地利用了邊界信息來實現(xiàn)更強的分類和更精確的定位。使用ResNet-50主干,他們的方法將單級探測器FCOS提高了2.8 AP增益(38.6 v.s.41.4)。通過ResNeXt-101-DCN主干,他們的BorderDet獲得了50.3 AP,優(yōu)于現(xiàn)有的最新方法。

123下一頁>

(免責(zé)聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請進一步核實,并對任何自主決定的行為負責(zé)。本網(wǎng)站對有關(guān)資料所引致的錯誤、不確或遺漏,概不負任何法律責(zé)任。
任何單位或個人認為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實內(nèi)容時,應(yīng)及時向本網(wǎng)站提出書面權(quán)利通知或不實情況說明,并提供身份證明、權(quán)屬證明及詳細侵權(quán)或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實,溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。 )

贊助商
2020-08-20
ECCV 2020論文合集(目標(biāo)檢測)
上次我們給大家?guī)砹岁P(guān)于CNN與圖像分割主題的論文,本次的主題是目標(biāo)檢測,包含2D、3D的目標(biāo)檢測,旋轉(zhuǎn)目標(biāo)檢測,視頻目標(biāo)檢測,大家在閱讀論文的同時也可親自動手實踐,快來看看吧!目標(biāo)檢測目標(biāo)檢測是與計

長按掃碼 閱讀全文