如果說有一個明顯的預(yù)測在這原本不可預(yù)測的一年里得到了證實,那就是云計算應(yīng)用的加速。只要看看每一個主要的云持續(xù)著非常健康的兩位數(shù)增長率。對于企業(yè)來說,這是為了適應(yīng)虛擬環(huán)境和突然被封鎖的世界中受限的供應(yīng)鏈。
一年前(COVID之前),我們將云應(yīng)用視為一系列邏輯階段,從DevTest到開發(fā)新的云中應(yīng)用程序,機會性采用新的SaaS服務(wù),隨著核心企業(yè)后端應(yīng)用程序的重新平臺化或轉(zhuǎn)型,家庭延伸現(xiàn)在進入視野。但是事后看來,過去一年云應(yīng)用的標(biāo)題是針對用例的,這些案例使企業(yè)能夠轉(zhuǎn)向新的常態(tài)–在工作和消費日益虛擬化的情況下,更改或開發(fā)新服務(wù)的需求,以及傳統(tǒng)供應(yīng)鏈面臨壓力的地方。
在過去的一年里,數(shù)據(jù)、分析和云服務(wù)的主要主題是擴展。我們看到新的數(shù)據(jù)庫云服務(wù)的推出相對較少(Amazon Timestream和Oracle MySQL服務(wù)是今年的主要推出內(nèi)容),而是現(xiàn)有服務(wù)的擴展,包括新的緩存、查詢聯(lián)合,以及作為云本機托管服務(wù)的第二代數(shù)據(jù)庫的推出(或在某些情況下重新推出)。
我們不會在這里耙海濱。在過去的幾周中,這些頁面已經(jīng)看到了有關(guān)人類智能作用的預(yù)測;職位招聘中對AI的需求; 在短期影響對AI的COVID大流行,這在長期正在鍛煉的更現(xiàn)實的期望對于AI在軟件市場的影響。
如果您是一名數(shù)據(jù)科學(xué)家,確保AI負責(zé)任并盡可能減少偏見就足夠具有挑戰(zhàn)性;當(dāng)您向技術(shù)較少的從業(yè)人員敞開大門時,這一挑戰(zhàn)就變得更大。我們沒有辦法倒轉(zhuǎn)時鐘,關(guān)閉所有這些公民數(shù)據(jù)科學(xué)家的大門。因此,技術(shù)將必須伸出援手,以幫助使AI處于直線和狹窄狀態(tài)??山忉尩腁I對于使負責(zé)任的AI計劃有效是必不可少的。盡管可解釋的AI不會是萬能藥(需要人類來開發(fā)如何建立自我文檔模型的標(biāo)準(zhǔn)),但如果沒有可解釋性,則消除偏見和不公平的努力就等于是輕率的努力。
面臨的挑戰(zhàn)是,在過去的一年中,我們在可解釋的AI方面沒有看到太多進展。一年前,我們在2020年的展望中概述了使AI擺脫黑匣子的挑戰(zhàn),并猜測在過去一年中,可解釋AI的局限性變化相對較小。例如,在隨后的12個月中,Google Cloud的披露頁面發(fā)生了微小的變化。
展望未來,負責(zé)任的AI不會在2021年成為新趨勢。但是,我們確實希望,由于法規(guī)的外部壓力,由于法規(guī)的外部壓力,將在解釋性方面進行新的努力??萍脊矩撠?zé)。隨之而來的是,隨著AI越來越普及,以及隨著公眾監(jiān)督需求的不斷增長,負責(zé)任AI的目標(biāo)將繼續(xù)成為目標(biāo)。
數(shù)據(jù)庫內(nèi)機器學(xué)習(xí)成為復(fù)選框項
乍一看,從提供商到Microsoft、SAP、Oracle、Informatica,SAS以及其他提供單獨的計算,存儲和微服務(wù)的提供商的第二波云原生DBaaS服務(wù)似乎正以另一種趨勢出現(xiàn):所謂的“將數(shù)據(jù)密集型流程下推”到數(shù)據(jù)庫中。在來年,我們將看到更多兩者。
推動下推并不是什么新鮮事。從一個角度來看,可以將其追溯到大型機計算的曙光中,程序和數(shù)據(jù)是互鎖的,但是更現(xiàn)代的表現(xiàn)形式是數(shù)據(jù)庫存儲過程和觸發(fā)器,它們實際上是Sybase的名片(以及為什么華爾街客戶頑固地存在的關(guān)鍵)被一個不穩(wěn)固的平臺所困,我們希望SAP能夠在1990年代注入新的生命。
隨著數(shù)據(jù)庫內(nèi)ML功能的涌現(xiàn),我們已經(jīng)看到了這一點。幾乎每個云數(shù)據(jù)倉庫DBaaS都支持某種形式的數(shù)據(jù)庫內(nèi)部ML模型的訓(xùn)練和運行。數(shù)據(jù)庫內(nèi)ML已成為一個復(fù)選框項,因為(1)ML對于數(shù)據(jù)非常繁瑣,并且(2)當(dāng)有替代的方式處理所有數(shù)據(jù)時,移動所有這些數(shù)據(jù)既昂貴又效率低下。而且無論如何,在某些情況下,我們可能要討論PB級的數(shù)據(jù)。誰愿意為轉(zhuǎn)移所有費用付費,然后等待所有數(shù)據(jù)轉(zhuǎn)移?
這里有一些例子。AWS最近宣布了Redshift及其圖形數(shù)據(jù)庫Neptune中的ML功能預(yù)覽。Microsoft支持在由Azure Synapse Analytics管理的SQL和Spark池中處理ML模型。Google BigQuery支持在數(shù)據(jù)庫中運行大約十種不同類型的ML算法。Oracle長期以來一直支持數(shù)據(jù)庫內(nèi)R和Python處理。同時,Snowflake支持使用ML工具(例如Dataiku,Alteryx和Zepl)中的SQL下推功能,以及與AutoML工具(例如DataRobot,Dataiku,H20.ai和Amazon SageMaker)的集成來支持功能工程。
在湖邊小屋放松
數(shù)據(jù)倉庫與數(shù)據(jù)湖之間的爭奪是安德魯·布魯斯特(Andrew Brust)的綜述中爭議最大的趨勢。本質(zhì)上,話語可以歸結(jié)為這一點。數(shù)據(jù)倉庫支持者稱其為云原生架構(gòu)為他們提供了規(guī)模,并且多模型數(shù)據(jù)支持使他們能夠支持與數(shù)據(jù)湖相關(guān)的各種變化。數(shù)據(jù)湖的支持者認為,大小問題尤其重要,尤其是當(dāng)您運行數(shù)據(jù)密集型AI模型時,新興的開源技術(shù)(例如Presto,Trino查詢引擎;表格式如Iceberg)可以使數(shù)據(jù)湖的性能幾乎與數(shù)據(jù)一樣好倉庫。
現(xiàn)實情況是,數(shù)據(jù)倉庫和數(shù)據(jù)湖各自具有各自不同的優(yōu)勢。是的,云數(shù)據(jù)倉庫現(xiàn)在可以冒險進入PB領(lǐng)域,但是對大多數(shù)企業(yè)而言,障礙是經(jīng)濟的:在這些規(guī)模上,數(shù)據(jù)湖通常會更經(jīng)濟。同樣,無論查詢引擎如何優(yōu)化,數(shù)據(jù)湖都依賴于文件掃描,而這種效率永遠不會像擁有可以對數(shù)據(jù)進行索引,壓縮和過濾的表那樣高效。
聯(lián)合查詢與來自不同數(shù)據(jù)庫的聯(lián)接表相關(guān)聯(lián)以進行單個查詢。由于數(shù)據(jù)移動(僅結(jié)果集)可以被最小化,因此將處理推進到數(shù)據(jù)所處的位置更適合云計算。在云中,這意味著聯(lián)合查詢以深入到云對象存儲。來自AWS,Azure,GCP和Snowflake的數(shù)據(jù)倉庫已經(jīng)通過聯(lián)合查詢或他們自己的專用查詢引擎進入了云存儲,我們期望Oracle和SAP今年將增加這些功能。
Data Lakehouse是一個新手,它可以在聯(lián)盟查詢離開的地方進行選擇。它是一年前由Databricks引入的,它是指由數(shù)據(jù)倉庫和數(shù)據(jù)湖混合而成的系統(tǒng)。這個詞已由Snowflake借用,最近又被Informatica接受(我們將在本周晚些時候?qū)Υ税l(fā)表更多看法)。對于僅僅在一年前推出的一個術(shù)語,此時,三分之二的人群非常多,這意味著我們可能會在來年看到更多這個術(shù)語。Data Lake房屋不一定使用關(guān)系數(shù)據(jù)倉庫作為入口點,而是依靠“開放”數(shù)據(jù)格式,最有可能是Parquet或CSV。
展望未來,我們并不希望將數(shù)據(jù)倉庫重新構(gòu)想為關(guān)系數(shù)據(jù)湖或數(shù)據(jù)湖屋,否則一定會使其過時。最終,將由您的開發(fā)人員來推動選擇。傳統(tǒng)的SQL數(shù)據(jù)庫開發(fā)人員可能會選擇關(guān)系數(shù)據(jù)湖,而使用Java或Python之類的語言的數(shù)據(jù)科學(xué)家和開發(fā)人員可能更喜歡數(shù)據(jù)湖,或者,如果他們的自然懷疑論得到了解決,則可能會選擇數(shù)據(jù)湖。在許多組織中,在數(shù)據(jù)倉庫,數(shù)據(jù)湖或數(shù)據(jù)湖屋之間進行選擇不是一個決定性的決定。
(免責(zé)聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請進一步核實,并對任何自主決定的行為負責(zé)。本網(wǎng)站對有關(guān)資料所引致的錯誤、不確或遺漏,概不負任何法律責(zé)任。
任何單位或個人認為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實內(nèi)容時,應(yīng)及時向本網(wǎng)站提出書面權(quán)利通知或不實情況說明,并提供身份證明、權(quán)屬證明及詳細侵權(quán)或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實,溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。 )