全新原生集成助力企業(yè)借助端到端軟件供應(yīng)鏈的可視性、治理和安全性,高效地交付ML 應(yīng)用程序
2024年3月5日——流式軟件公司、JFrog 軟件供應(yīng)鏈平臺的締造者JFrog(納斯達克股票代碼:FROG),近日宣布與全托管機器學(xué)習(xí)(ML)平臺Qwak進行全新技術(shù)整合,將機器學(xué)習(xí)模型與傳統(tǒng)軟件開發(fā)流程相結(jié)合,以簡化、加速和擴展ML應(yīng)用的安全交付。
JFrog戰(zhàn)略執(zhí)行副總裁Gal Marder表示:“目前,數(shù)據(jù)科學(xué)家和ML工程師正在使用大量不同的工具來發(fā)布成熟的模型,而這些工具大多與企業(yè)內(nèi)的標(biāo)準(zhǔn) DevOps 流程脫節(jié)。這不僅拖慢了MLOps流程,有損安全性,還增加了構(gòu)建AI應(yīng)用的成本。以Artifactory和Xray為核心的JFrog平臺與Qwak的結(jié)合為用戶提供了一個完整的MLSecOps解決方案,使ML模型與其他軟件開發(fā)流程保持一致,為工程、MLOps、DevOps和DevSecOps團隊的所有軟件組件創(chuàng)建了一個單一事實來源,從而使其能夠以最低的風(fēng)險和更低的成本,更快速地構(gòu)建和發(fā)布AI應(yīng)用。”
將JFrog Artifactory 和 Xray 與 Qwak 的 ML平臺相結(jié)合,將 ML 應(yīng)用程序與現(xiàn)代化 DevSecOps 和 MLOps 工作流中的其他所有軟件開發(fā)組件結(jié)合在一起,使數(shù)據(jù)科學(xué)家、ML 工程師、開發(fā)人員、安全人員和 DevOps 團隊能夠輕松、快速、安全地構(gòu)建 ML 應(yīng)用程序,并遵守所有監(jiān)管準(zhǔn)則。原生 Artifactory 集成將 JFrog 的通用 ML 模型注冊表與集中式 MLOps 平臺相連接,使用戶能夠輕松地構(gòu)建、訓(xùn)練和部署模型,并提高可視性、治理、版本管理和安全性。使用集中式平臺部署 ML 模型,還能讓用戶減少對基礎(chǔ)設(shè)施的關(guān)注,從而專注于核心數(shù)據(jù)科學(xué)任務(wù)。
IDC 的研究表明,雖然越來越多的用戶在使用AI/ML,但要想大規(guī)模地實現(xiàn)AI/ML 的全部優(yōu)勢,主要面臨三方面的障礙因素:實施和訓(xùn)練模型的成本,專業(yè)人才的短缺,以及AI/ML 缺乏統(tǒng)一的軟件開發(fā)生命周期流程。
JFrog軟件開發(fā)、DevOps 和 DevSecOps 項目副總裁 Jim Mercer 表示:“對于希望擴展自身 MLOps 能力的企業(yè)來說,構(gòu)建 ML 管道可能是一件復(fù)雜、耗時且成本高昂的工作。這些自行構(gòu)建的解決方案不具備管理和保護大規(guī)模構(gòu)建、訓(xùn)練和調(diào)整 ML 模型過程的能力,而且?guī)缀醪痪邆淇刹杉{性。擁有一個有助于自動化開發(fā)的單一記錄系統(tǒng),提供有據(jù)可查的出處鏈,并確保 ML 模型與所有其他軟件組件的安全性,為優(yōu)化 ML 流程提供了一個值得信賴的替代方案,同時提升了模型安全性和合規(guī)性。”
如果不具備ML運維(MLOps)所需的正確的基礎(chǔ)設(shè)施、平臺和流程,在構(gòu)建、管理和擴展復(fù)雜的ML基礎(chǔ)設(shè)施,快速部署模型,并在避免高額費用的情況下確保模型的安全將會變得極為困難?;A(chǔ)設(shè)施的復(fù)雜性往往為企業(yè)帶來管理層面的挑戰(zhàn),從而導(dǎo)致各種開發(fā)環(huán)境之間的身份驗證和安全協(xié)議成本高昂且耗時。
Qwak 首席執(zhí)行官 Alon Lev 表示:“如今,AI和 ML 已從遙遠的未來轉(zhuǎn)變?yōu)闊o處不在的現(xiàn)實。構(gòu)建ML 模型是一個復(fù)雜而耗時的過程,因此對于許多數(shù)據(jù)科學(xué)家而言,將自己的想法轉(zhuǎn)化為可投入生產(chǎn)的模型并不容易。 雖然市場上有很多開源工具,但將所有這些工具組合在一起構(gòu)建一個全面的 ML 管道并非易事,因此我們很高興能與 JFrog 合作開發(fā)解決方案,使客戶能夠像使用 JFrog Artifactory 和 Xray 一樣安全地管理軟件供應(yīng)鏈,實現(xiàn) ML 制品和發(fā)布的自動化。”
JFrog安全研究團隊在廣泛使用的AI模型庫Hugging Face中發(fā)現(xiàn)了惡意ML模型,這進一步證實了安全的端到端MLOps流程勢在必行。他們的研究發(fā)現(xiàn),Hugging Face 中的多個惡意 ML 模型帶來了威脅行為者執(zhí)行代碼的隱患,這可能導(dǎo)致數(shù)據(jù)泄露、系統(tǒng)受損或其他惡意行為。
###
關(guān)于JFrog
JFrog Ltd.(納斯達克股票代碼:FROG)的使命是創(chuàng)造一個從開發(fā)人員到設(shè)備之間暢通無阻的軟件交付世界。秉承“流式軟件”的理念,JFrog軟件供應(yīng)鏈平臺是統(tǒng)一的記錄系統(tǒng),幫助企業(yè)快速安全地構(gòu)建、管理和分發(fā)軟件,確保軟件可用、可追溯和防篡改。集成的安全功能還有助于發(fā)現(xiàn)和抵御威脅和漏洞并加以補救。JFrog 的混合、通用、多云平臺可以作為跨多個主流云服務(wù)提供商的自托管和SaaS服務(wù)。全球數(shù)百萬用戶和7000多名客戶,包括大多數(shù)財富100強企業(yè),依靠JFrog解決方案安全地開展數(shù)字化轉(zhuǎn)型。一用便知!
(免責(zé)聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請進一步核實,并對任何自主決定的行為負責(zé)。本網(wǎng)站對有關(guān)資料所引致的錯誤、不確或遺漏,概不負任何法律責(zé)任。
任何單位或個人認為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實內(nèi)容時,應(yīng)及時向本網(wǎng)站提出書面權(quán)利通知或不實情況說明,并提供身份證明、權(quán)屬證明及詳細侵權(quán)或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實,溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。 )