YOLO作為目標(biāo)檢測領(lǐng)域的創(chuàng)新技術(shù),一經(jīng)推出就受到開發(fā)者的廣泛關(guān)注。值得一提的是,基于百度自研的開源深度學(xué)習(xí)平臺PaddlePaddle的YOLO v3實現(xiàn),參考了論文【Bag of Tricks for Image Classification with Convolutional Neural Networks】,增加了mixup,label_smooth等處理,精度(mAP(0.5:0.95))相比于原作者的實現(xiàn)提高了4.7個絕對百分點,在此基礎(chǔ)上加入synchronize batch normalization, 最終精度相比原作者提高5.9個絕對百分點。我們將在下文中為大家詳解實現(xiàn)的具體過程。
CV領(lǐng)域的核心問題之一就是目標(biāo)檢測(object detection),它的任務(wù)是找出圖像當(dāng)中所有感興趣的目標(biāo)(物體),確定其位置和大小(包含目標(biāo)的矩形框)并識別出具體是哪個對象。Faster R-CNN及在其基礎(chǔ)上改進(jìn)的Mask R-CNN在實例分割、目標(biāo)檢測、人體關(guān)鍵點檢測等任務(wù)上都取得了很好的效果,但通常較慢。YOLO 創(chuàng)造性的提出one-stage,就是目標(biāo)定位和目標(biāo)識別在一個步驟中完成。
由于整個檢測流水線是單個網(wǎng)絡(luò),因此可以直接在檢測性能上進(jìn)行端到端優(yōu)化,使得基礎(chǔ)YOLO模型能以每秒45幀的速度實時處理圖像,較小網(wǎng)絡(luò)的Fast YOLO每秒處理圖像可達(dá)到驚人的155幀。YOLO有讓人驚艷的速度,同時也有讓人止步的缺陷:不擅長小目標(biāo)檢測。而YOLO v3保持了YOLO的速度優(yōu)勢,提升了模型精度,尤其加強了小目標(biāo)、重疊遮擋目標(biāo)的識別,補齊了YOLO的短板,是目前速度和精度均衡的目標(biāo)檢測網(wǎng)絡(luò)。
YOLO v3檢測原理
YOLO v3 是一階段End2End的目標(biāo)檢測器。YOLO v3將輸入圖像分成S*S個格子,每個格子預(yù)測B個bounding box,每個bounding box預(yù)測內(nèi)容包括: Location(x, y, w, h)、Confidence Score和C個類別的概率,因此YOLO v3輸出層的channel數(shù)為S*S*B*(5 + C)。YOLO v3的loss函數(shù)也有三部分組成:Location誤差,Confidence誤差和分類誤差。
圖:YOLO v3檢測原理
YOLO v3網(wǎng)絡(luò)結(jié)構(gòu)
YOLO v3 的網(wǎng)絡(luò)結(jié)構(gòu)由基礎(chǔ)特征提取網(wǎng)絡(luò)、multi-scale特征融合層和輸出層組成。
1、特征提取網(wǎng)絡(luò)。YOLO v3使用 DarkNet53作為特征提取網(wǎng)絡(luò):DarkNet53 基本采用了全卷積網(wǎng)絡(luò),用步長為2的卷積操作替代了池化層,同時添加了 Residual 單元,避免在網(wǎng)絡(luò)層數(shù)過深時發(fā)生梯度彌散。
2、特征融合層。為了解決之前YOLO版本對小目標(biāo)不敏感的問題,YOLO v3采用了3個不同尺度的特征圖來進(jìn)行目標(biāo)檢測,分別為13*13,26*26,52*52,用來檢測大、中、小三種目標(biāo)。特征融合層選取 DarkNet 產(chǎn)出的三種尺度特征圖作為輸入,借鑒了FPN(feature pyramid networks)的思想,通過一系列的卷積層和上采樣對各尺度的特征圖進(jìn)行融合。
3、輸出層。同樣使用了全卷積結(jié)構(gòu),其中最后一個卷積層的卷積核個數(shù)是255:3*(80+4+1)=255,3表示一個grid cell包含3個bounding box,4表示框的4個坐標(biāo)信息,1表示Confidence Score,80表示COCO數(shù)據(jù)集中80個類別的概率。
圖:YOLO v3 網(wǎng)絡(luò)結(jié)構(gòu)
PaddlePaddle簡介
PaddlePaddle是百度自研的集深度學(xué)習(xí)框架、工具組件和服務(wù)平臺為一體的技術(shù)領(lǐng)先、功能完備的開源深度學(xué)習(xí)平臺,有全面的官方支持的工業(yè)級應(yīng)用模型,涵蓋自然語言處理、計算機視覺、推薦引擎等多個領(lǐng)域,并開放多個領(lǐng)先的預(yù)訓(xùn)練中文模型。目前,已經(jīng)被中國企業(yè)廣泛使用,并擁有活躍的開發(fā)者社區(qū)。
應(yīng)用案例—AI識蟲
紅脂大小蠹是危害超過 35 種松科植物的蛀干害蟲,自 1998 年首次發(fā)現(xiàn)到 2004 年,發(fā)生面積超過 52.7 萬平方公里 , 枯死松樹達(dá) 600 多萬株。且在持續(xù)擴散,給我國林業(yè)經(jīng)濟帶來巨大損失。傳統(tǒng)監(jiān)測方式依賴具有專業(yè)識別能力的工作人員進(jìn)行實地檢查,專業(yè)要求高,工作周期長。北京林業(yè)大學(xué)、百度、嘉楠、軟通智慧合作面向信息素誘捕器的智能蟲情監(jiān)測系統(tǒng),通過PaddlePaddle訓(xùn)練得到目標(biāo)檢測模型YOLO v3,識別紅脂大小蠹蟲,遠(yuǎn)程監(jiān)測病蟲害情況,識別準(zhǔn)確率達(dá)到90%,與專業(yè)人士水平相當(dāng),并將原本需要兩周才能完成的檢查任務(wù),縮短至1小時就能完成。
基于PaddlePaddle實戰(zhàn)
運行樣例代碼需要Paddle Fluid的v.1.4或以上的版本。如果你的運行環(huán)境中的PaddlePaddle低于此版本,請根據(jù)安裝文檔中的說明來更新PaddlePaddle。
數(shù)據(jù)準(zhǔn)備
在MS-COCO數(shù)據(jù)集上進(jìn)行訓(xùn)練,通過如下方式下載數(shù)據(jù)集。
cd dataset/coco
./download.sh
數(shù)據(jù)目錄結(jié)構(gòu)如下:
dataset/coco/
├── annotations
│ ├── instances_train2014.json
│ ├── instances_train2017.json
│ ├── instances_val2014.json
│ ├── instances_val2017.json
| ...
├── train2017
│ ├── 000000000009.jpg
│ ├── 000000580008.jpg
| ...
├── val2017
│ ├── 000000000139.jpg
│ ├── 000000000285.jpg
| ...
模型訓(xùn)練
安裝cocoapi:訓(xùn)練前需要首先下載cocoapi。
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
# if cython is not installed
pip install Cython
# Install into global site-packages
make install
# Alternatively, if you do not have permissions or prefer
# not to install the COCO API into global site-packages
python2 setup.py install --user
下載預(yù)訓(xùn)練模型: 本示例提供darknet53預(yù)訓(xùn)練模型,該模型轉(zhuǎn)換自作者提供的darknet53在ImageNet上預(yù)訓(xùn)練的權(quán)重,采用如下命令下載預(yù)訓(xùn)練模型。
sh ./weights/download.sh
通過初始化 --pretrain 加載預(yù)訓(xùn)練模型。同時在參數(shù)微調(diào)時也采用該設(shè)置加載已訓(xùn)練模型。 請在訓(xùn)練前確認(rèn)預(yù)訓(xùn)練模型下載與加載正確,否則訓(xùn)練過程中損失可能會出現(xiàn)NAN。
開始訓(xùn)練: 數(shù)據(jù)準(zhǔn)備完畢后,可以通過如下的方式啟動訓(xùn)練。
python train.py \
--model_save_dir=output/ \
--pretrain=${path_to_pretrain_model}
--data_dir=${path_to_data}
• 通過設(shè)置export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7指定8卡GPU訓(xùn)練。
• 可選參數(shù)見:?python train.py --help
數(shù)據(jù)讀取器說明:
• 數(shù)據(jù)讀取器定義在reader.py中。
模型設(shè)置:
• 模型使用了基于COCO數(shù)據(jù)集生成的9個先驗框:10x13,16x30,33x23,30x61,62x45,59x119,116x90,156x198,373x326
• 檢測過程中,nms_topk=400, nms_posk=100,nms_thresh=0.45
訓(xùn)練策略:
• 采用momentum優(yōu)化算法訓(xùn)練YOLO v3,momentum=0.9。
• 學(xué)習(xí)率采用warmup算法,前4000輪學(xué)習(xí)率從0.0線性增加至0.001。在400000,450000輪時使用0.1,0.01乘子進(jìn)行學(xué)習(xí)率衰減,最大訓(xùn)練500000輪。
下圖為模型訓(xùn)練結(jié)果Train Loss。
圖:Train Loss
模型評估
模型評估是指對訓(xùn)練完畢的模型評估各類性能指標(biāo)。本示例采用COCO官方評估。
eval.py是評估模塊的主要執(zhí)行程序,調(diào)用示例如下:
python eval.py \
--dataset=coco2017 \
--weights=${path_to_weights} \
• 通過設(shè)置export CUDA_VISIBLE_DEVICES=0指定單卡GPU評估。
若訓(xùn)練時指定--syncbn=False, 模型評估精度如下。
若訓(xùn)練時指定--syncbn=True, 模型評估精度如下。
• 注意: 評估結(jié)果基于pycocotools評估器,沒有濾除score < 0.05的預(yù)測框,其他框架有此濾除操作會導(dǎo)致精度下降。
模型推斷
模型推斷可以獲取圖像中的物體及其對應(yīng)的類別,infer.py是主要執(zhí)行程序,調(diào)用示例如下。
python infer.py \
--dataset=coco2017 \
--weights=${path_to_weights} \
--image_path=data/COCO17/val2017/ \
--image_name=000000000139.jpg \
--draw_thresh=0.5
• 通過設(shè)置export CUDA_VISIBLE_DEVICES=0指定單卡GPU預(yù)測。
模型預(yù)測速度(Tesla P40)
圖:YOLO v3 預(yù)測可視化
- 蜜度索驥:以跨模態(tài)檢索技術(shù)助力“企宣”向上生長
- 比亞迪第五代DM技術(shù)問世,首搭秦L/海豹06 DM-i,開創(chuàng)油耗2時代!
- 小紅書沉帖降權(quán)怎么做,有效方法大盤點!
- 亞洲時刻京東送上電視好禮 以舊換新一體化服務(wù)讓低價更靠譜
- 互聯(lián)網(wǎng)營銷師和全媒體運營師的區(qū)別?
- 聯(lián)想集團(tuán)車計算“超級大腦”概念機亮相
- 華策影視設(shè)立專項基金成立AIGC應(yīng)用研究院
- 三部委審批,聯(lián)合發(fā)布9個新職業(yè),“互聯(lián)網(wǎng)營銷師”上榜
- 互聯(lián)網(wǎng)營銷師的報考條件是什么?
- 互聯(lián)網(wǎng)營銷師的適合人群有哪些?
- 互聯(lián)網(wǎng)營銷師行業(yè)前景怎么樣?
免責(zé)聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請進(jìn)一步核實,并對任何自主決定的行為負(fù)責(zé)。本網(wǎng)站對有關(guān)資料所引致的錯誤、不確或遺漏,概不負(fù)任何法律責(zé)任。任何單位或個人認(rèn)為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實內(nèi)容時,應(yīng)及時向本網(wǎng)站提出書面權(quán)利通知或不實情況說明,并提供身份證明、權(quán)屬證明及詳細(xì)侵權(quán)或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實,溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。