AGI時(shí)代算力基礎(chǔ)架構(gòu)面臨的挑戰(zhàn)與機(jī)遇

目前,人工智能按照進(jìn)化階段分為了弱人工智能(ANI)、通用人工智能(AGI)和超人工智能(ASI)三個(gè)階段。自1956年麥卡錫、明斯基等科學(xué)家首次提出“人工智能(Artificial Intelligence,簡(jiǎn)稱AI)”這一概念,標(biāo)志著人工智能學(xué)科的誕生;到2017年,谷歌Transformer模型的發(fā)布顛覆了傳統(tǒng)的自然語(yǔ)言處理模型,奠定了生成式AI的基礎(chǔ);再到2022年,OpenAI正式發(fā)布 ChatGPT并在短短2個(gè)月內(nèi)實(shí)現(xiàn)了用戶數(shù)破億,大量類ChatGPT的通用人工智能隨之涌現(xiàn),正式揭開(kāi)了AGI時(shí)代的序幕。

正如微軟CEO薩提亞 · 納德拉所說(shuō),“AI的黃金時(shí)代正在到來(lái),并將重新定義我們對(duì)工作的全部認(rèn)識(shí)”。在各個(gè)行業(yè)中,必將涌現(xiàn)出無(wú)數(shù)基于類似GPT-4這樣的通用AGI平臺(tái)的創(chuàng)新應(yīng)用,重構(gòu)行業(yè)的產(chǎn)品、服務(wù)和流程,進(jìn)而影響我們每一個(gè)人的工作、生活和學(xué)習(xí)。

人工智能的三要素包括數(shù)據(jù)、算法及算力。作為AI原料的數(shù)據(jù)是十分有限的,可利用的公域數(shù)據(jù)在2026年之前就會(huì)被大模型全部訓(xùn)練完成。場(chǎng)景化AI訓(xùn)練、微調(diào)的數(shù)據(jù)來(lái)源將尤其依賴于有價(jià)值的私域數(shù)據(jù),但私域數(shù)據(jù)往往是不開(kāi)放的,隱私計(jì)算和聯(lián)邦學(xué)習(xí)則將成為打破數(shù)據(jù)孤島極為可行的方案,同時(shí)合成數(shù)據(jù)技術(shù)的應(yīng)用也將成為必然。

此外,算法復(fù)雜度呈指數(shù)級(jí)增長(zhǎng),模型層數(shù)、參數(shù)規(guī)??焖倥蛎浀耐瑫r(shí)也在不斷突破。當(dāng)下,三要素中的算力成為了很多應(yīng)用落地的最大瓶頸。那么,AI算力基礎(chǔ)架構(gòu)具體面臨哪些挑戰(zhàn)與機(jī)遇?

挑戰(zhàn)

在AGI時(shí)代,數(shù)據(jù)大模型的參數(shù)規(guī)模呈現(xiàn)出快速增長(zhǎng)的態(tài)勢(shì)。GPT從2018年的1.17億發(fā)展到2020年的1750億,文心一言3.0參數(shù)規(guī)模達(dá)到了2600億,Google的Palm 2參數(shù)量也超過(guò)3400億。隨著參數(shù)模型的日益龐大、摩爾定律陷入瓶頸。對(duì)計(jì)算效率精盡的追逐,使得馮?諾依曼模型的先天性不足被成倍放大。計(jì)算墻、內(nèi)存墻、通信墻、能耗墻成為了AGI算力基礎(chǔ)架構(gòu)的四大挑戰(zhàn)。

首先談?wù)凙I計(jì)算的主角GPU:大模型并行計(jì)算量巨大,以GPU/TPU代替CPU進(jìn)行大量簡(jiǎn)單重復(fù)計(jì)算,雖然計(jì)算效率有了明顯的提升,但單卡算力和大模型所需總算力之間仍然存在巨大差距。以GPT-3為例,每進(jìn)行一次訓(xùn)練迭代需要消耗4.5ExaFlops算力,而主流GPU卡單卡算力只能達(dá)到TFlops級(jí)別,百萬(wàn)級(jí)別的算力差距便產(chǎn)生了算力墻。分布式訓(xùn)練在一定程度上解決了算力墻問(wèn)題,但綜合考慮TOC及不同的AI場(chǎng)景,使用專業(yè)的芯片和異構(gòu)計(jì)算架構(gòu)將成為突破算力墻的另一個(gè)必要方向。

參數(shù)量是衡量模型大小的最關(guān)鍵指標(biāo),參數(shù)越多對(duì)內(nèi)存的需求越大。以1750億參數(shù)的GPT-3為例,參數(shù)量(FP16精度)需要350GB內(nèi)存(175B*2Bytes),梯度(FP16精度)需要350GB內(nèi)存(175B*2Bytes),優(yōu)化器狀態(tài)(FP32精度)需要2100GB內(nèi)存(175B*12Bytes),總計(jì)需要2800GB內(nèi)存(350GB+350GB+2100GB),而主流的GPU卡僅能夠提供80GB顯存,單個(gè)GPU無(wú)法裝下如此龐大的參數(shù)量。此外,現(xiàn)有的計(jì)算架構(gòu)以CPU為中心,CPU主內(nèi)存與GPU本地內(nèi)存無(wú)法統(tǒng)一尋址,內(nèi)存資源相互隔離,GPU無(wú)法高效的使用CPU主內(nèi)存資源,最終導(dǎo)致產(chǎn)生內(nèi)存墻。

我們?cè)诶么笮头植际接?xùn)練解決算力墻和內(nèi)存墻問(wèn)題的同時(shí),又產(chǎn)生了通信墻。不同的并行訓(xùn)練方式下,服務(wù)器內(nèi)及服務(wù)器間會(huì)分別引入AllReduce、AlltoAll、梯度數(shù)據(jù)聚合與分發(fā)等通信需求,通信性能強(qiáng)弱將影響整體計(jì)算速度的快慢。以千億級(jí)參數(shù)規(guī)模的大模型訓(xùn)練為例,單次計(jì)算迭代內(nèi)梯度同步需要的通信量就達(dá)到了百GB量級(jí)。此外,AI大模型訓(xùn)練是一種帶寬敏感的計(jì)算業(yè)務(wù),測(cè)試數(shù)據(jù)表明,采用200G網(wǎng)絡(luò)相對(duì)于100G網(wǎng)絡(luò),會(huì)帶來(lái)10倍以上的性能提升。基于以上兩方面,一張能夠?yàn)闄C(jī)間通信提供高吞吐、低時(shí)延服務(wù)的高性能網(wǎng)絡(luò)十分重要,服務(wù)器的內(nèi)部網(wǎng)絡(luò)連接以及集群網(wǎng)絡(luò)中的通信拓?fù)渫瑯有枰M(jìn)行專門設(shè)計(jì),實(shí)現(xiàn)算網(wǎng)的高效協(xié)同。

大模型的訓(xùn)練和推理是兩頭能量怪獸,勢(shì)必帶來(lái)極大的功耗。當(dāng)前業(yè)界主流的8卡GPU服務(wù)器最大系統(tǒng)功耗達(dá)到6500W,用于GPU服務(wù)器之間互聯(lián)的128口400G以太網(wǎng)交換機(jī)的功耗也接近3500W。假設(shè)ChatGPT要滿足每天2.5億的咨詢量,需要使用3萬(wàn)張GPU卡,那么,僅僅在推理環(huán)節(jié)每天消耗的電費(fèi)超過(guò)就超過(guò)50萬(wàn)(按照每度電0.8元計(jì)算),因此能耗墻是每個(gè)運(yùn)營(yíng)者都要面對(duì)的現(xiàn)實(shí)問(wèn)題。

算力墻、內(nèi)存墻、通信墻和能耗墻這四大挑戰(zhàn)之間存在一定的關(guān)聯(lián)性,這也決定了我們不能靠簡(jiǎn)單的堆砌來(lái)解決問(wèn)題,產(chǎn)品架構(gòu)的系統(tǒng)性設(shè)計(jì)顯得更為重要。紫光股份旗下新華三集團(tuán)在計(jì)算、網(wǎng)絡(luò)、存儲(chǔ)方面都有長(zhǎng)期的積累和沉淀,能夠系統(tǒng)性地研究和考慮以上的問(wèn)題,并提出相應(yīng)解決方案。

算力墻應(yīng)對(duì)之道

面對(duì)AGI時(shí)代算力的爆發(fā)式增長(zhǎng)需求,單一處理器無(wú)法同時(shí)兼顧性能和靈活度。在此情況下,用最適合的專用硬件去承擔(dān)最適合的計(jì)算任務(wù),并采用異構(gòu)計(jì)算架構(gòu)去整合這些多元算力,是突破算力墻的有效手段。

在當(dāng)前的AI訓(xùn)練場(chǎng)景,NVIDIA高端GPU是市場(chǎng)上的“硬通貨”,其2023年發(fā)布的Hopper架構(gòu)是NVIDIA GPU的集大成者,一經(jīng)推出便受到市場(chǎng)的青睞。

除了采用GPU外,為人工智能業(yè)務(wù)開(kāi)發(fā)專用的AI芯片逐漸成為業(yè)界的新趨勢(shì)。

在AI芯片領(lǐng)域,最具代表性的是Google TPU(Tensor Processing Unit)。發(fā)布于2016年的第一代TPU成為了 AlphaGo 背后的算力擔(dān)當(dāng),當(dāng)前已經(jīng)發(fā)展到了第四代的TPU v4。與 GPU 相比,TPU采用低精度計(jì)算,大幅降低了功耗、加快運(yùn)算速度。

Meta也發(fā)布了MTIA(Meta Training and Inference Accelerator)自研AI芯片,該芯片采用RISC-V開(kāi)源架構(gòu),可應(yīng)用在自然語(yǔ)言處理、計(jì)算機(jī)視覺(jué)、推薦系統(tǒng)等領(lǐng)域。

除了AI芯片日益多元化之外,AI芯片間的高速互聯(lián)技術(shù)也是突破算力墻的關(guān)鍵。

NVDIA首創(chuàng)了NVLink + NVSwitch技術(shù),為多GPU系統(tǒng)提供更加快速的互聯(lián)解決方案。借助NVIDIA NVLINK技術(shù),能最大化提升系統(tǒng)吞吐量,很好的解決了GPU互聯(lián)瓶頸。最新的NVIDIA Hopper架構(gòu)采用NVLINK4.0技術(shù),總帶寬最高可達(dá)900GB/s。

2023 年 5 月 29 日,NVIDIA推出的DGX GH200 AI超級(jí)計(jì)算機(jī),采用NVLink互連技術(shù)以及 NVLink Switch System 將256個(gè)GH200 超級(jí)芯片相連,把所有GPU作為一個(gè)整體協(xié)同運(yùn)行。

Google推出的OCS(Optical Circuit Switch)光電路交換機(jī)技術(shù)實(shí)現(xiàn)TPU之間的互聯(lián),解決TPU的擴(kuò)展性問(wèn)題。Google還自研了一款光路開(kāi)關(guān)芯片Palomar,通過(guò)該芯片可實(shí)現(xiàn)光互聯(lián)拓?fù)涞撵`活配置,也就是說(shuō),TPU芯片之間的互聯(lián)拓?fù)洳⒎且怀刹蛔兊?,可以根?jù)機(jī)器學(xué)習(xí)的具體模型來(lái)改變拓?fù)?,提升?jì)算性能及可靠性。借助OCS技術(shù),可以將4096個(gè)TPU v4組成一臺(tái)超級(jí)計(jì)算機(jī)。

為了滿足AI加速芯片的互聯(lián)需求,OCP組織2019年成立了OAI開(kāi)源項(xiàng)目組,通過(guò)OAM子項(xiàng)目定義業(yè)界通用形態(tài)的GPU/AI模塊、對(duì)外提供標(biāo)準(zhǔn)通信接口,建立OAI相關(guān)的技術(shù)架構(gòu)。芯片廠家只要將其GPU/AI加速芯片做成OAM模塊的形態(tài),通過(guò)UBB來(lái)承載多個(gè)OAM模塊,就可以在任何支持OAM/UBB模塊的服務(wù)器上兼容使用。

新華三集團(tuán)作為OAI 2.0規(guī)范的主要起草單位,在國(guó)產(chǎn)化OAM方面多有相應(yīng)的落地實(shí)踐。那么如何在AI算力日益多元化的情況下,如何有效整合這些多元化算力?采用異構(gòu)計(jì)算技術(shù)是最佳選擇。在異構(gòu)計(jì)算領(lǐng)域,新華三開(kāi)展了廣泛的實(shí)踐,H3C Uniserver R5500 G6踐行異構(gòu)計(jì)算設(shè)計(jì)理念,可搭載Intel或AMD CPU,機(jī)箱天然兼容NVIDIA Hopper架構(gòu)GPU以及OAI架構(gòu),同時(shí)提供對(duì)多家廠商DPU的支持能力,為不同的應(yīng)用場(chǎng)景提供了澎湃算力。

未來(lái),還采用類似XPU Direct RDMA的異構(gòu)芯片通信技術(shù),實(shí)現(xiàn)異構(gòu)計(jì)算平臺(tái)互聯(lián)。XPU通信時(shí)不再需要CPU中轉(zhuǎn),大幅減少數(shù)據(jù)拷貝的次數(shù),提升了通信性能,有效整合了多元算力。

內(nèi)存墻應(yīng)對(duì)之道

隨著服務(wù)器向異構(gòu)計(jì)算架構(gòu)轉(zhuǎn)型,傳統(tǒng)的PCIe互聯(lián)模式已經(jīng)無(wú)法滿足高速緩存一致性和內(nèi)存一致性的需求。GPU加速卡無(wú)法使用Host主機(jī)自帶的內(nèi)存資源,無(wú)法很好的解決AI大模型訓(xùn)練場(chǎng)景遇到的內(nèi)存墻問(wèn)題。為此,迫切需要在服務(wù)器內(nèi)使用新興的互聯(lián)架構(gòu),突破內(nèi)存墻的限制。

NVIDIA Grace Hopper架構(gòu)中,完美的解決了大模型訓(xùn)練的內(nèi)存墻問(wèn)題。在該架構(gòu)中,Grace CPU和Hopper GPU使用帶寬高達(dá)900 GB/s NVLink C2C鏈路互聯(lián),GPU可以通過(guò)NVLink C2C透明地訪問(wèn)CPU上的512GB內(nèi)存資源。

NVIDIA通過(guò)Grace Hopper向業(yè)界展現(xiàn)了突破內(nèi)存墻問(wèn)題的解決方案。此外,AMD推出的 Instinct MI300,英特爾推出Falcon Shores也采用了類似的解決方案來(lái)突破內(nèi)存墻問(wèn)題。但這些都屬于私有技術(shù)。有沒(méi)有一種開(kāi)源方案既能解決大容量?jī)?nèi)存問(wèn)題和內(nèi)存一致性問(wèn)題,又能避免對(duì)現(xiàn)有協(xié)議體系完全顛覆?Intel聯(lián)合其他8家科技巨頭于2019年成立的CXL(Compute Express Link)聯(lián)盟就致力于解決該問(wèn)題。

CXL是一種開(kāi)源的互聯(lián)技術(shù)標(biāo)準(zhǔn),其能夠讓CPU與GPU、FPGA或其他加速器之間實(shí)現(xiàn)高速互聯(lián),并且維持CPU內(nèi)存空間和加速器設(shè)備內(nèi)存之間的一致性,以滿足資源共享、內(nèi)存池化和高效運(yùn)算調(diào)度的需求。CXL組織已經(jīng)發(fā)布CXL3.0版本,其數(shù)據(jù)傳輸速率提升至 64 GT/s,并引入了Fabric功能和管理、改進(jìn)的內(nèi)存池、增強(qiáng)的一致性以及對(duì)等通信等重要功能。放眼未來(lái),CXL4.0基于PCI-Express 7.0標(biāo)準(zhǔn),擁有更高的容量(512GB/S)和更低的延遲,將在性能上實(shí)現(xiàn)另一個(gè)層級(jí)的躍升。

當(dāng)前,各大上游廠商都在開(kāi)發(fā)或已推出支持CXL協(xié)議的部件,實(shí)現(xiàn)GPU顯存與主機(jī)內(nèi)存的統(tǒng)一尋址,解決內(nèi)存墻問(wèn)題已經(jīng)近在眼前。暢想未來(lái),隨著CXL Switch等關(guān)鍵部件的進(jìn)一步發(fā)展,我們可以實(shí)現(xiàn)CPU、GPU、內(nèi)存等資源的進(jìn)一步池化,各資源池通過(guò)CXL Switch互訪互通,在集群層面實(shí)現(xiàn)全局內(nèi)存一致性。

新華三集團(tuán)在2019年4月正式加入了CXL組織,并于2022年升級(jí)為Contributor會(huì)員。新華三在CXL技術(shù)研究上進(jìn)行了持續(xù)的投入,目前正在開(kāi)展基于CXL技術(shù)的內(nèi)存池化、異構(gòu)互聯(lián)方面的研究。

通信墻應(yīng)對(duì)之道

在集群網(wǎng)絡(luò)方面,大模型訓(xùn)練優(yōu)化過(guò)的無(wú)損網(wǎng)絡(luò)解決方案可提供高吞吐和低延時(shí)的網(wǎng)絡(luò)服務(wù),確保在大規(guī)模訓(xùn)練時(shí)集群的性能。

端網(wǎng)融合的RoCE無(wú)損網(wǎng)絡(luò)

RoCE網(wǎng)絡(luò)是基于以太網(wǎng) RDMA技術(shù)實(shí)現(xiàn)的,它比IB更加開(kāi)放。RoCE可以基于現(xiàn)有的以太網(wǎng)基礎(chǔ)設(shè)施進(jìn)行部署,網(wǎng)絡(luò)管理更加簡(jiǎn)化。但RoCE也面臨著一些挑戰(zhàn),比如ECMP負(fù)載不均、哈希沖突、PFC死鎖等?;贗P協(xié)議的開(kāi)放性,出現(xiàn)了多種針對(duì)RoCE的優(yōu)化方案,其核心思想即將服務(wù)器、網(wǎng)卡、交換機(jī)作為一個(gè)整體,結(jié)合創(chuàng)新的擁塞控制算法,實(shí)現(xiàn)端網(wǎng)協(xié)同。

Google數(shù)據(jù)中心使用的TIMELY算法,由網(wǎng)卡進(jìn)行端到端的RTT時(shí)延測(cè)量,根據(jù)RTT時(shí)延數(shù)據(jù)調(diào)整發(fā)送速率,實(shí)現(xiàn)高性能的RoCE網(wǎng)絡(luò)。TIMELY算法使用谷歌自研網(wǎng)卡實(shí)現(xiàn),主要應(yīng)用在Google內(nèi)部。

阿里團(tuán)隊(duì)提出的HPCC擁塞控制算法,它使用可編程交換機(jī),通過(guò)INT遙測(cè)攜帶網(wǎng)絡(luò)擁塞數(shù)據(jù),然后由智能網(wǎng)卡動(dòng)態(tài)調(diào)整發(fā)送速率,獲得高帶寬和低時(shí)延的高性能網(wǎng)絡(luò)。

EQDS(edge-queued datagram service)是目前被廣泛討論的另一種擁塞控制解決方案。它將網(wǎng)絡(luò)中的絕大部分排隊(duì)操作從交換機(jī)轉(zhuǎn)移到發(fā)送端網(wǎng)卡上,使得交換機(jī)可以采用很小的緩存設(shè)計(jì)。EQDS由接收端網(wǎng)卡驅(qū)動(dòng),通過(guò)Credit機(jī)制,來(lái)指導(dǎo)數(shù)據(jù)包發(fā)送。另外EQDS使用Packet Spray實(shí)現(xiàn)逐包的負(fù)載均衡,以解決負(fù)載不均和哈希沖突的問(wèn)題。如果交換機(jī)支持DCN(Drop Congestion Notification)技術(shù),可以由交換機(jī)實(shí)現(xiàn)數(shù)據(jù)包修剪(Packet Trimming),僅將擁塞報(bào)文的報(bào)文頭發(fā)送給接收端,接收端接收到報(bào)文頭后,可以要求發(fā)送端快速重傳數(shù)據(jù)包。實(shí)驗(yàn)表明,EQDS在測(cè)試中表現(xiàn)出色,能夠顯著提高數(shù)據(jù)中心網(wǎng)絡(luò)的性能。

新華三集團(tuán)正在研究基于自研服務(wù)器、智能網(wǎng)卡和高性能交換機(jī),實(shí)現(xiàn)端網(wǎng)融合的RoCE無(wú)損網(wǎng)絡(luò)解決方案,為AI業(yè)務(wù)提供高性能無(wú)損通信網(wǎng)絡(luò)。

在網(wǎng)計(jì)算

除了通過(guò)增加網(wǎng)絡(luò)帶寬、提升鏈路利用率、優(yōu)化擁塞控制算法外,在網(wǎng)計(jì)算(In-Network Computer)是另一種優(yōu)化通訊開(kāi)銷的重要手段。在網(wǎng)計(jì)算(In Network Computing)可以將AI分布式訓(xùn)練的集合通信操作卸載到網(wǎng)絡(luò)設(shè)備上,讓網(wǎng)絡(luò)設(shè)備參與計(jì)算,減少計(jì)算節(jié)點(diǎn)之間的消息交互,大幅縮減AI分布式訓(xùn)練的時(shí)間。

以集合通信中使用頻率最高的AllReduce規(guī)約運(yùn)算為例,從各節(jié)點(diǎn)收集梯度,將訓(xùn)練過(guò)程中的匯總規(guī)約卸載到集成了計(jì)算引擎單元的網(wǎng)絡(luò)交換機(jī)中進(jìn)行,然后再更新至每一個(gè)節(jié)點(diǎn)。通過(guò)在網(wǎng)計(jì)算技術(shù),加速了整個(gè)Allreduce的過(guò)程,可以有效的減少網(wǎng)絡(luò)擁塞和降低通信延遲。

新華三集團(tuán)積極投入在網(wǎng)計(jì)算技術(shù)的研發(fā),借助可編程交換芯片或在傳統(tǒng)交換機(jī)中引入FPGA芯片實(shí)現(xiàn)在網(wǎng)計(jì)算,提升AI訓(xùn)練的整體性能。

高速以太網(wǎng)及光互聯(lián)

算力需求的爆發(fā)式增長(zhǎng)推動(dòng)了數(shù)據(jù)中心網(wǎng)絡(luò)向800G、1.6T及更高速率快速演進(jìn)。光模塊作為網(wǎng)絡(luò)互聯(lián)的關(guān)鍵部件,隨著速率的提升其功耗也一路攀升,在整機(jī)系統(tǒng)的占比已經(jīng)遠(yuǎn)超ASIC加風(fēng)扇功耗之和。另外,高速光模塊在數(shù)據(jù)中心網(wǎng)絡(luò)建設(shè)中的成本占比也在大幅提升。為了應(yīng)對(duì)由此帶來(lái)的功耗、成本和時(shí)延挑戰(zhàn),業(yè)界出現(xiàn)了兩種最具潛力的解決方案。

LPO線性直驅(qū)技術(shù)去掉了光模塊中功耗最高的DSP芯片,由交換機(jī)ASIC芯片來(lái)對(duì)高速信號(hào)進(jìn)行補(bǔ)償和均衡,在實(shí)現(xiàn)成本下降的同時(shí),大幅降低了光模塊的功耗和延遲,非常適合應(yīng)用在短距大帶寬、低功耗低延時(shí)的AI/ML場(chǎng)景。

傳統(tǒng)可插拔光模塊到交換機(jī)ASIC芯片電信號(hào)連接距離較長(zhǎng),途經(jīng)點(diǎn)較多,累積損耗大。通過(guò)CPO/NPO等封裝技術(shù)的引入,顯著縮短了交換芯片和光引擎間的距離,同時(shí)能夠提供更高密度的高速端口,更適合在1.6T速率后實(shí)現(xiàn)高算力場(chǎng)景下的低能耗、高能效。

在高速互聯(lián)技術(shù)領(lǐng)域,22年新華三集團(tuán)發(fā)布了采用NPO技術(shù)的400G硅光融合交換機(jī)S9825-32D32DO, MPO光引擎接口支持2KM傳輸距離,端口功耗降低40%以上。

2023年,新華三集團(tuán)進(jìn)一步推出了采用共封裝技術(shù)的CPO交換機(jī),對(duì)外提供64個(gè)800G接口或128個(gè)400G接口,并計(jì)劃今年內(nèi)支持LPO線性驅(qū)動(dòng)光模塊的128口400G,64口800G端口的交換機(jī)產(chǎn)品。未來(lái),新華三將通過(guò)持續(xù)的技術(shù)創(chuàng)新為AI業(yè)務(wù)提供高性能、低延遲、低能耗的通信網(wǎng)絡(luò),破解通信墻的難題。

能耗墻應(yīng)對(duì)之道

降低AI模型整體能耗的主要方式依然是提高數(shù)據(jù)中心的散熱效率,液冷散熱方案因其低能耗、高散熱、低噪聲、低 TCO 等優(yōu)勢(shì),有著巨大的發(fā)展?jié)摿Α?/p>

其中,浸沒(méi)式液冷散熱是典型的直接接觸型液冷,發(fā)熱元件與冷卻液直接接觸,散熱效率更高,噪音更低。目前,浸沒(méi)式液冷方案已由初期的單相式液冷進(jìn)化為相變式液冷,充分利用冷卻液的蒸發(fā)潛熱,滿足散熱極端要求,保證IT設(shè)備滿功率運(yùn)行。

目前,新華三集團(tuán)在浸沒(méi)式液冷方案方面完成了全面布局,緊跟互聯(lián)網(wǎng)業(yè)務(wù)發(fā)展步伐,秉承產(chǎn)學(xué)研一體理念,從冷板式液冷到浸沒(méi)式液冷,從單相式液冷到相變式液冷,從3M冷卻液到國(guó)產(chǎn)冷卻液,積極研究跟進(jìn)推出新華三液冷系統(tǒng)一體化解決方案,包含液冷交換機(jī)、液冷服務(wù)器、熱交換單元、外冷設(shè)備等,并且在液冷方案方面持續(xù)進(jìn)行方案迭代和前沿技術(shù)探索。

展望

本文主要從基礎(chǔ)架構(gòu)角度去討論如何應(yīng)對(duì)AGI時(shí)代的挑戰(zhàn)。隨著數(shù)據(jù)、算力及算法取得不斷的突破,人工智能將會(huì)重塑整個(gè)經(jīng)濟(jì)、社會(huì)、產(chǎn)業(yè)和人們生活的方方面面。這就需要互聯(lián)網(wǎng)企業(yè)應(yīng)整合各類資源打造垂直的生態(tài),借助生態(tài)伙伴的力量實(shí)現(xiàn)科技成果轉(zhuǎn)化,更好地賦能百行百業(yè)。作為數(shù)字化解決方案領(lǐng)導(dǎo)者,新華三集團(tuán)具備百行百業(yè)的解決方案能力,通過(guò)把互聯(lián)網(wǎng)公司的大模型能力融入到新華三解決方案中,可以開(kāi)展面向政府、企業(yè)、金融、醫(yī)療、教育等場(chǎng)景的N項(xiàng)業(yè)務(wù)合作,共同應(yīng)對(duì)快速場(chǎng)景化落地的挑戰(zhàn)。

免責(zé)聲明:此文內(nèi)容為第三方自媒體作者發(fā)布的觀察或評(píng)論性文章,所有文字和圖片版權(quán)歸作者所有,且僅代表作者個(gè)人觀點(diǎn),與極客網(wǎng)無(wú)關(guān)。文章僅供讀者參考,并請(qǐng)自行核實(shí)相關(guān)內(nèi)容。投訴郵箱:editor@fromgeek.com。

極客網(wǎng)企業(yè)會(huì)員

免責(zé)聲明:本網(wǎng)站內(nèi)容主要來(lái)自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請(qǐng)進(jìn)一步核實(shí),并對(duì)任何自主決定的行為負(fù)責(zé)。本網(wǎng)站對(duì)有關(guān)資料所引致的錯(cuò)誤、不確或遺漏,概不負(fù)任何法律責(zé)任。任何單位或個(gè)人認(rèn)為本網(wǎng)站中的網(wǎng)頁(yè)或鏈接內(nèi)容可能涉嫌侵犯其知識(shí)產(chǎn)權(quán)或存在不實(shí)內(nèi)容時(shí),應(yīng)及時(shí)向本網(wǎng)站提出書面權(quán)利通知或不實(shí)情況說(shuō)明,并提供身份證明、權(quán)屬證明及詳細(xì)侵權(quán)或不實(shí)情況證明。本網(wǎng)站在收到上述法律文件后,將會(huì)依法盡快聯(lián)系相關(guān)文章源頭核實(shí),溝通刪除相關(guān)內(nèi)容或斷開(kāi)相關(guān)鏈接。

2023-06-08
AGI時(shí)代算力基礎(chǔ)架構(gòu)面臨的挑戰(zhàn)與機(jī)遇
目前,人工智能按照進(jìn)化階段分為了弱人工智能(ANI)、通用人工智能(AGI)和超人工智能(ASI)三個(gè)階段。自1956年麥卡錫、明斯基等科學(xué)家...

長(zhǎng)按掃碼 閱讀全文