科技云報(bào)道原創(chuàng)。
AI大模型正在倒逼數(shù)字基礎(chǔ)設(shè)施產(chǎn)業(yè)加速升級(jí)。
過去一年半,AI大模型標(biāo)志性的應(yīng)用相繼出現(xiàn),從ChatGPT到Sora一次次刷新人們的認(rèn)知。震撼的背后,是大模型參數(shù)指數(shù)級(jí)的增長。
這種數(shù)據(jù)暴漲的壓力,快速傳導(dǎo)到了大模型的底層基礎(chǔ)設(shè)施。作為支撐大模型的底座“三大件”——算力、網(wǎng)絡(luò)、存儲(chǔ),都在快速的迭代。
算力方面,英偉達(dá)用了兩年的時(shí)間就將GPU從H100升級(jí)到了H200,讓模型的訓(xùn)練性能提升了5倍。
網(wǎng)絡(luò)方面,從之前的25G升級(jí)到現(xiàn)在的200G,網(wǎng)絡(luò)帶寬提升了6倍。隨著RDMA大規(guī)模的應(yīng)用,網(wǎng)絡(luò)延遲也降低了60%。
存儲(chǔ)方面,華為、阿里云、百度智能云、騰訊云等大廠,都相繼推出了面向AI大模型的存儲(chǔ)方案。
那么作為基礎(chǔ)設(shè)施的三大件之一的存儲(chǔ),在AI大模型的場景下到底發(fā)生了哪些變化?又有哪些新的技術(shù)挑戰(zhàn)?
AI大模型帶來的 存儲(chǔ)挑戰(zhàn)
算力、算法、數(shù)據(jù),在發(fā)展AI過程中的重要性早已為人所熟知,但是作為數(shù)據(jù)的承載,存儲(chǔ)卻往往被忽略。
在訓(xùn)練AI大模型的過程中,需要大量數(shù)據(jù)的交換,存儲(chǔ)作為數(shù)據(jù)的基礎(chǔ)硬件,并非僅僅只是簡單地記錄數(shù)據(jù),而是深刻參與到了數(shù)據(jù)歸集、流轉(zhuǎn)、利用等大模型訓(xùn)練的全流程。
如果存儲(chǔ)性能不強(qiáng),那么可能需要耗費(fèi)大量時(shí)間才能完成一次訓(xùn)練,這就會(huì)嚴(yán)重制約大模型的發(fā)展迭代。
事實(shí)上,不少企業(yè)在開發(fā)及實(shí)施大模型應(yīng)用過程中,已經(jīng)開始意識(shí)到存儲(chǔ)系統(tǒng)所面臨的巨大挑戰(zhàn)。
從AI大模型的研發(fā)生產(chǎn)流程看,可分為數(shù)據(jù)采集、清洗、訓(xùn)練和應(yīng)用四個(gè)階段,各階段都對存儲(chǔ)提出了新的要求,比如:
在數(shù)據(jù)采集環(huán)節(jié),由于原始訓(xùn)練數(shù)據(jù)規(guī)模海量,且來源多樣,企業(yè)希望能夠有一個(gè)大容量、低成本、高可靠的數(shù)據(jù)存儲(chǔ)底座。
在數(shù)據(jù)清洗階段,網(wǎng)絡(luò)上收集的原始數(shù)據(jù)是不能直接用于AI模型訓(xùn)練的,需要將多格式、多協(xié)議的數(shù)據(jù)進(jìn)行清洗、去重、過濾、加工,行業(yè)內(nèi)稱其為“數(shù)據(jù)預(yù)處理”。
與傳統(tǒng)單模態(tài)小模型訓(xùn)練相比,多模態(tài)大模型所需的訓(xùn)練數(shù)據(jù)量是其1000倍以上,一個(gè)典型的百TB級(jí)大模型數(shù)據(jù)集,預(yù)處理時(shí)長超過10天,占比AI數(shù)據(jù)挖掘全流程的30%。
同時(shí),數(shù)據(jù)預(yù)處理伴隨高并發(fā)處理,對算力消耗巨大。這就要求存儲(chǔ)能夠提供多協(xié)議、高性能的支持,用標(biāo)準(zhǔn)文件的方式完成海量數(shù)據(jù)的清洗和轉(zhuǎn)換,以縮短數(shù)據(jù)預(yù)處理的時(shí)長。
在模型訓(xùn)練環(huán)節(jié),通常會(huì)出現(xiàn)訓(xùn)練集加載慢、易中斷、數(shù)據(jù)恢復(fù)時(shí)間長等問題。
相較于傳統(tǒng)學(xué)習(xí)模型,大模型訓(xùn)練參數(shù)、訓(xùn)練數(shù)據(jù)集指數(shù)級(jí)增加,如何實(shí)現(xiàn)海量小文件數(shù)據(jù)集快速加載,降低 GPU等待時(shí)間是關(guān)鍵。
目前,主流預(yù)訓(xùn)練模型已經(jīng)有千億級(jí)參數(shù),而頻繁的參數(shù)調(diào)優(yōu)、網(wǎng)絡(luò)不穩(wěn)定、服務(wù)器故障等多種因素帶來訓(xùn)練過程不穩(wěn)定,易中斷返工,需要Checkpoints機(jī)制來確保訓(xùn)練回退到還原點(diǎn),而不是初始點(diǎn)。
當(dāng)前,由于Checkpoints需要天級(jí)的恢復(fù)時(shí)長,導(dǎo)致大模型整體訓(xùn)練周期陡增,而面對單次超大的數(shù)據(jù)量和未來小時(shí)級(jí)的頻度要求,需要認(rèn)真考慮如何降低Checkpoints恢復(fù)時(shí)長。
因此,存儲(chǔ)能否快速地讀寫checkpoint(檢查點(diǎn))文件,也成了能否高效利用算力資源、提高訓(xùn)練效率的關(guān)鍵。
在應(yīng)用階段,存儲(chǔ)需要提供比較豐富的數(shù)據(jù)審核的能力,來滿足鑒黃鑒暴安全合規(guī)的訴求,保證大模型生成的內(nèi)容是合法、合規(guī)的方式去使用。
總的來說,AI大模型訓(xùn)練的效率要達(dá)到極致,減少不必要的浪費(fèi),必須在數(shù)據(jù)上下功夫。準(zhǔn)確地說,必須要在數(shù)據(jù)存儲(chǔ)技術(shù)上進(jìn)行創(chuàng)新。
AI倒逼存儲(chǔ)技術(shù)創(chuàng)新
根據(jù)投資機(jī)構(gòu)ARK Invest預(yù)算,到2030年,產(chǎn)業(yè)有望訓(xùn)練出比GPT-3多57倍參數(shù)、多720倍Token的AI模型,成本將從今天的170億美元降至60萬美元。隨著計(jì)算價(jià)格降低,數(shù)據(jù)將成為大模型生產(chǎn)的主要限制因素。
面對數(shù)據(jù)桎梏問題,不少企業(yè)已經(jīng)開始進(jìn)行前瞻性布局。
比如百川智能、智譜、元象等大模型企業(yè),都已采用騰訊云AIGC云存儲(chǔ)解決方案來提升效率。
數(shù)據(jù)顯示,騰訊云AIGC云存儲(chǔ)解決方案,可將大模型的數(shù)據(jù)清洗和訓(xùn)練效率均提升一倍,需要的時(shí)間縮短一半。
科大訊飛、中科院等大模型企業(yè)和機(jī)構(gòu),則采用了華為AI存儲(chǔ)相關(guān)產(chǎn)品。
數(shù)據(jù)顯示,華為OceanStor A310可實(shí)現(xiàn)從數(shù)據(jù)歸集、預(yù)處理到模型訓(xùn)練、推理應(yīng)用的AI全流程海量數(shù)據(jù)管理,簡化數(shù)據(jù)歸集流程,減少數(shù)據(jù)搬移,預(yù)處理效率提升30%。
目前,國內(nèi)各大廠商也相繼發(fā)布了面向AI大模型場景的存儲(chǔ)方案。
2023年7月,華為發(fā)布兩款面向AI大模型的存儲(chǔ)產(chǎn)品——OceanStor A310深度學(xué)習(xí)數(shù)據(jù)湖存儲(chǔ)和FusionCube A3000訓(xùn)/推超融合一體機(jī)。
2023年11月云棲大會(huì)上,阿里云推出一系列針對大模型場景的存儲(chǔ)產(chǎn)品創(chuàng)新,用AI技術(shù)賦能AI業(yè)務(wù),幫助用戶更輕松地管理大規(guī)模多模態(tài)數(shù)據(jù)集,提高模型訓(xùn)練、推理的效率和準(zhǔn)確性。
2023年12月,百度智能云發(fā)布了“百度滄?!ご鎯?chǔ)”統(tǒng)一技術(shù)底座,同時(shí)面向數(shù)據(jù)湖存儲(chǔ)和AI存儲(chǔ)能力進(jìn)行了全面增強(qiáng)。
2024年4月,騰訊云宣布云存儲(chǔ)解決方案面向AIGC場景全面升級(jí),針對AI大模型數(shù)據(jù)采集清洗、訓(xùn)練、推理、數(shù)據(jù)治理全流程提供全面、高效的云存儲(chǔ)支持。
綜合各大廠商的存儲(chǔ)技術(shù)創(chuàng)新,可以發(fā)現(xiàn)技術(shù)方向較為統(tǒng)一,都是基于AI大模型生產(chǎn)研發(fā)的全流程,對存儲(chǔ)產(chǎn)品進(jìn)行有針對性的性能優(yōu)化。
以騰訊云為例,在數(shù)據(jù)采集與清洗環(huán)節(jié),首先需要存儲(chǔ)能夠支持多協(xié)議、高性能、大帶寬。
因此,騰訊云對象存儲(chǔ)COS能夠支持單集群管理百 EB 級(jí)別存儲(chǔ)規(guī)模,提供便捷、高效的數(shù)據(jù)公網(wǎng)接入能力,并支持多種協(xié)議,充分支持大模型PB級(jí)別的海量數(shù)據(jù)采集。
同時(shí),數(shù)據(jù)清洗時(shí),大數(shù)據(jù)引擎需要快速地讀取并過濾出有效數(shù)據(jù)。騰訊云對象存儲(chǔ)COS通過自研數(shù)據(jù)加速器GooseFS提升數(shù)據(jù)訪問性能,實(shí)現(xiàn)了高達(dá)數(shù)TBps的讀取帶寬,支撐計(jì)算高速運(yùn)行,大大提升數(shù)據(jù)清洗效率。
在模型訓(xùn)練環(huán)節(jié),通常需要每2-4小時(shí)保存一次訓(xùn)練成果,以便能在GPU故障時(shí)時(shí)能回滾。
騰訊云自主研發(fā)并行文件存儲(chǔ)CFS Turbo ,面向AIGC訓(xùn)練場景的進(jìn)行了專門優(yōu)化,每秒總讀寫吞吐達(dá)到TiB/s級(jí)別,每秒元數(shù)據(jù)性能高達(dá)百萬OPS,均為業(yè)界第一。3TB checkpoint 寫入時(shí)間從10分鐘,縮短至10秒內(nèi),使大模型訓(xùn)練效率大幅提升。
大模型推理場景對數(shù)據(jù)安全與可追溯性提出更高要求。
騰訊云數(shù)據(jù)萬象CI為此提供圖片隱式水印、AIGC內(nèi)容審核、智能數(shù)據(jù)檢索MetaInsight等能力,為數(shù)據(jù)生產(chǎn)從“用戶輸入——預(yù)處理——內(nèi)容審核——版權(quán)保護(hù)——安全分發(fā)——信息檢索”業(yè)務(wù)全流程提供有力支撐,優(yōu)化AIGC內(nèi)容生產(chǎn)與管理模式,順應(yīng)監(jiān)管導(dǎo)向,拓寬存儲(chǔ)邊界。
同時(shí),隨著訓(xùn)練數(shù)據(jù)和推理數(shù)據(jù)的增長,需要提供低成本的存儲(chǔ)能力,減少存儲(chǔ)開銷。騰訊云對象存儲(chǔ)服務(wù)提供了高達(dá)12個(gè)9的數(shù)據(jù)持久性和99.995%的數(shù)據(jù)可用性,能夠?yàn)闃I(yè)務(wù)提供持續(xù)可用的存儲(chǔ)服務(wù)。
總的來說,隨著AI大模型的推進(jìn),數(shù)據(jù)存儲(chǔ)出現(xiàn)了新的趨勢。市場渴望更高性能、大容量、低成本的存儲(chǔ)產(chǎn)品,并加速大模型各個(gè)環(huán)節(jié)的融合和效率提升。
而各大廠商也在通過技術(shù)創(chuàng)新不斷滿足大模型各環(huán)節(jié)的需求,為企業(yè)實(shí)施大模型降低門檻。
在AI大模型的倒逼下,存儲(chǔ)創(chuàng)新已在路上。
【關(guān)于科技云報(bào)道】
專注于原創(chuàng)的企業(yè)級(jí)內(nèi)容行家——科技云報(bào)道。成立于2015年,是前沿企業(yè)級(jí)IT領(lǐng)域Top10媒體。獲工信部權(quán)威認(rèn)可,可信云、全球云計(jì)算大會(huì)官方指定傳播媒體之一。深入原創(chuàng)報(bào)道云計(jì)算、大數(shù)據(jù)、人工智能、區(qū)塊鏈等領(lǐng)域。
免責(zé)聲明:此文內(nèi)容為第三方自媒體作者發(fā)布的觀察或評(píng)論性文章,所有文字和圖片版權(quán)歸作者所有,且僅代表作者個(gè)人觀點(diǎn),與極客網(wǎng)無關(guān)。文章僅供讀者參考,并請自行核實(shí)相關(guān)內(nèi)容。投訴郵箱:editor@fromgeek.com。
- 蜜度索驥:以跨模態(tài)檢索技術(shù)助力“企宣”向上生長
- 乘云而上,OceanBase再越山峰
- 新浪新聞探索大會(huì)在京舉行 探索新質(zhì)生產(chǎn)力賦能產(chǎn)業(yè)新路徑
- 銷量差異背后:小米如何在全球競爭中逆襲,國內(nèi)卻遭遇瓶頸?
- OPPO式出海,為全球化講一個(gè)“落地生根”的故事
- MLPerf Storage揭榜,「存儲(chǔ)」掛帥,驅(qū)動(dòng)AI上演“飛馳人生”
- 技術(shù)創(chuàng)新締造產(chǎn)業(yè)應(yīng)用價(jià)值,京東何曉冬論文獲CIKM最佳時(shí)間檢驗(yàn)獎(jiǎng)
- 高通揭開遮羞布,ARM已失去創(chuàng)新力,壟斷地位被動(dòng)搖
- 中國制造太厲害,售價(jià)降九成,三星被迫再關(guān)閉一項(xiàng)業(yè)務(wù)
- 麥當(dāng)勞、肯德基、星巴克拍短劇,短劇會(huì)成為品牌常規(guī)營銷手段嗎?
- 今年雙11大變樣,淘寶京東不卷了!
免責(zé)聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請進(jìn)一步核實(shí),并對任何自主決定的行為負(fù)責(zé)。本網(wǎng)站對有關(guān)資料所引致的錯(cuò)誤、不確或遺漏,概不負(fù)任何法律責(zé)任。任何單位或個(gè)人認(rèn)為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識(shí)產(chǎn)權(quán)或存在不實(shí)內(nèi)容時(shí),應(yīng)及時(shí)向本網(wǎng)站提出書面權(quán)利通知或不實(shí)情況說明,并提供身份證明、權(quán)屬證明及詳細(xì)侵權(quán)或不實(shí)情況證明。本網(wǎng)站在收到上述法律文件后,將會(huì)依法盡快聯(lián)系相關(guān)文章源頭核實(shí),溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。